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Abstract

Phosphonic acid derivatives of prostaglandins Fi and Fx were prepared through Arbuzov reaction of 2-
decarboxy-2-iodoprostaglandin intermediates. The intermediate iodo compounds, which are potentially valuable
for the synthesis of other analogs, were obtained from the parent prostaglandins by Barton’s modification of the
Hunsdiecker reaction. © 1999 Elsevier Science Ltd. All rights reserved.
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The wide range of biological interactions of prostaglandins has prompted much synthetic effort
directed both towards the prostaglandins themselves and towards analogs of them.! One underrepresented
class of analogs is that in which the carboxylic acid is replaced with heteroatom acids.? We considered
that a 2-decarboxy-2-haloprostaglandin, a heretofore undisclosed class of prostaglandin, could act as an
intermediate for the synthesis of such compounds, and that intermediates of this type could be obtained
from prostaglandins themselves by halodecarboxylation; i.e., Hunsdiecker reaction (Scheme 1). Overall,
this would allow quick access to a variety of new prostaglandin derivatives without recourse to de novo
synthesis.
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Scheme 1.

The harshness of the classical Hunsdiecker reaction® would probably limit its use on prostaglandins.
However, Barton has introduced a much milder method in which a carboxylic—thiohydroxamic mixed
anhydride is homolyzed and undergoes decarboxylation to give an alkyl radical which abstracts halide
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from a donor, often the solvent.* Although this is a mild method, we initially selected prostaglandin F
(1)° because it is one of the more robust prostaglandins and lacks a double bond on the alpha-side chain
on which a radical will be generated. Additionally, because the carboxylic-thiohydroxamic anhydride is
generally prepared by treatment of an acid chloride with a salt of N-hydroxypyridine-2-thione, we elected
to acetylate the alcohols (Scheme 2).
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Scheme 2. (a) 30 equiv. Ac,0, 35 equiv. Et;N, cat. DMAP, CH,Cly, rt 8 h; then sat. aq. Na,COs, 1 h, 97%; (b) (COCI),, cat.
DMF, CH,Cl,; then CF;CH,I, cat. DMAP, the sodium salt of N-hydroxypyridine-2-thione, CH,Cl,, hv, reflux, 56%

In terms of propensity of displacement, the alkyl iodide would be most desirable. Unfortunately,
iodides are the halides obtained in lowest yield by Barton’s procedure. Indeed, when prostaglandin Fq
triacetate (2) was treated by Barton’s best procedure for formation of iodides (iodoform as iodine radical
source and cyclohexene as solvent and trap for I, formed) a complex mixture resulted. More recently,
Eaton has advocated the use of trifluoroiodoethane as the source of iodide radical.® Under his conditions,
including in situ formation of the carboxylic-thiohydroxamic anhydride,® prostaglandin F;y triacetate
gave iodo-norprostaglandin 37 in 56% yield after chromatography.

With a halo-norprostaglandin in hand, we elected to produce a phosphonic acid derivative, since this
would be readily obtainable from the Arbuzov reaction® and in the only reported case of a prostaglandin
phosphonate,?® the phosphorus ester was not subsequently deprotected. Thus, iodo-norprostaglandin 3
was heated at reflux with a 100-fold excess of triethyl phosphite to give diethylphosphonate 4.° The
phosphorus ester of diethylphosphonate 4 was then hydrolyzed under basic conditions with concomitant
deprotection of the alcohols to give monoethyl phosphonate 510 (Scheme 3).
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Scheme 3. (a) 100 equiv. P(OE)s, reflux, 4 h, 91%:; (b) 100 equiv. 2.5 M ag. NaOH, EtOH, reflux, 5 h, 73%

Having successfully prepared a prostaglandin Fq analog, we turned to prostaglandin Fpy (7). In this
case there is a potentially problematic alkene in the side chain; however, a cyclization would require a
4-exo trig or 5-endo trig process, neither of which is favored. In the event, prostaglandin F, triacetate
(8) gave the corresponding iodo-norprostaglandin 9! in 64% yield (Scheme 4).
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Scheme 4. (a) Ac,0, Et;N, DMAP, CH,Cl,, rt 8 h; then sat. aq. Na;CO;3, 1 h, 99%; (b) (COCI),, DMF, CH,Cl,; then CF3CH,1,
DMARP, sodium salt of N-hydroxypyridine-2-thione, CH,Cly, hv, reflux, 64%; (c) 100 equiv. P(OEt)3, reflux, 4 h, 82%
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As in the previous case, iodo-norprostaglandin 9 was converted into diethyl phosphonate 10'2 then
deprotected under basic conditions to give pure monoethyl phosphonate 11. 13 Alternatively, we attempted
to doubly deprotect the phosphorus ester of diethyl phosphonate 10 with bromotrimethylsilane,'* which
required subsequent removal of the acetate protecting groups (Scheme 5). Unfortunately, the sodium
phosphonate produced by this method (12) was only about 75% pure and was difficult to purify.
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Scheme 5. (a) 100 equiv. NaOH, EtOH-water, reflux, 5 h, 73%; (b) TMSBr, rt 14 h; (c) 5.5 equiv. NaOH, MeOH-water, rt 22 h

Overall, we have demonstrated that natural prostaglandins can be converted rapidly into 2-decarboxy-
2-phosphonic acid derivatives through protected 2-iodo-2-decarboxy intermediates obtainable by Bar-
ton’s modification of the Hunsdiecker reaction. The 2-haloprostaglandins could be widely useful in the
synthesis of diverse novel prostaglandins.
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